Bonne rentrée

Vos cours et Travaux Pratiques au jour le jour

lundi 18 octobre 2010

Séance n°13

Chapitre 2
Les dipôles passifs

III Associations de résistances
III2 Association de résistances en parallèle : le pont diviseur de courant

IV Résistance d'un conducteur filiforme

un petit extrait de wikipédia :

 Pourquoi utiliser la haute tension ?
Un pylône d'une ligne à 735 kV d'Hydro-Québec, reconnaissable à ses entretoises en X, qui séparent les quatre conducteurs. Le réseau de transport québécois compte 11 422 km de lignes à 735 et 765 kV, qui acheminent l'électricité des centrales hydroélectriques nordiques vers les centres de consommation du sud.

Le choix d'utiliser des lignes à haute tension s'impose dès qu'il s'agit de transporter de l'énergie électrique sur des distances supérieures à quelques kilomètres. Le but est de réduire les chutes de tension en ligne, les pertes en ligne, et également d'améliorer la stabilité des réseaux.

Les pertes en ligne sont dues à l'effet Joule, qui ne dépend que de deux paramètres : la résistance et le courant (P = R.I2). L'utilisation de la haute tension permet, à puissance transportée (P = U.I) équivalente, de diminuer le courant et donc les pertes. Par ailleurs, pour diminuer la résistance, aux fréquences industrielles, il n'y a que deux facteurs, la résistivité des matériaux utilisés pour fabriquer les câbles de transport, et la section de ces câbles. À matériau de fabrication et section équivalents, les pertes sont donc égales, en principe, pour les lignes aériennes et pour les lignes souterraines


Les lignes à haute tension font partie du domaine « haute tension B » qui comprend les valeurs supérieures à 50 kV en courant alternatif. L'expression « très haute tension » est parfois utilisée, mais n'a pas de définition officielle. Les tensions utilisées varient d'un pays à l'autre. Schématiquement, dans un pays, on trouvera des tensions de l'ordre de 63 kV à 90 kV pour de la distribution urbaine ou régionale, de l'ordre de 110 à 220 kV pour les échanges entre régions, et de l'ordre de 345 à 500 kV pour les principales interconnexions nationales et internationales. Dans certains pays, comme au Québec, on utilise aussi du 735 kV, et même des tensions plus élevées comme en Chine (1 100 kV), Inde (projet 1 200 kV), Japon (projet 1 100 kV) et dans l'ex-URSS où des essais de transport en « ultra haute tension » ont été effectués en 1 500 kV — mais ce type de tension ne se justifie que pour un transport sur une distance de l'ordre du millier de kilomètres, pour lequel un transport en courant continu peut être une solution intéressante.


Les lignes à haute tension fonctionnent presque toutes en courant alternatif triphasé ; mais dans le cadre particulier de certaines traversées sous-marines ou de lignes enterrées, le transport se fait en courant continu (HVDC)[11]  pour des raisons d'économie, d'encombrement et de fiabilité. A titre d'exemple :

    * La liaison France-Angleterre IFA 2000 se fait via deux paires de conducteurs dont la tension continue par rapport à la terre vaut respectivement +270 kV et -270 kV, soit une différence de potentiel entre les deux conducteurs de chaque paire égale à 540 kV ;
    * à Grondines, 100 km au sud-ouest de Québec, la traversée du fleuve Saint-Laurent s’effectue au moyen de deux paires de câbles dont la tension continue par rapport à la terre est de plus ou moins 450 kV, soit une différence de potentiel entre les deux conducteurs de chaque paire égale à 900 kV.
    * Le futur réseau DESERTEC (production massive d'énergie solaire dans la zone sahélienne) ne peut fonctionner qu'avec des lignes HVDC.


Afin de limiter les pertes par effet Joule, on souhaite que la résistance R soit la plus faible possible. La longueur de la ligne étant imposée, on ne peut jouer que sur la résistivité,  du matériau conducteur et sur sa section .
 

Résistivité des matériaux utilisés pour les lignes
Le cuivre, dont la résistivité vaut 1,72 x 10-8 Ω∙m, n’est pas utilisé car trop coûteux, mais aussi trop lourd pour les lignes aériennes. On lui préfère des ensembles aluminium-acier ou des alliages aluminium, magnésium et silicium dont la résistivité est de l’ordre de 3 x 10-8 Ω∙m
 

Section des lignes 
La section d’un conducteur aérien d'une ligne à haute tension est de l'ordre de 500 mm2 : il n’est pas avantageux d’augmenter davantage la section des conducteurs.

Ordre de grandeur des résistances linéiques
Pour une ligne de section 500 mm2 réalisée avec un matériau de résistivité 3 x 10-8 Ω∙m, la résistance d’un conducteur aérien est de l’ordre de 6 x 10-2 Ω/km. Cette valeur est donnée à titre indicatif car nous avons vu que la résistance dépendait fortement de la section.

Pour les lignes à haute tension, les valeurs des résistances linéiques sont comprises entre 0,01 Ω/km (ligne 735 kV d'Hydro-Québec) et 0,1 Ω/km. La norme américaine IEEE C37.06-1997 indique des valeurs allant de 0,012 Ω/km (800 kV) à 0,031 Ω/km (362 kV).


Aucun commentaire:

Enregistrer un commentaire